Connect with us
 

Ciencia

Secretos de navegación de las hormigas del desierto

Published

on

¿Qué? Hormigas del desierto recolectando carroña.

¿Dónde? En el desierto, bajo temperaturas de 50°C.

¿Cómo? Las hormigas utilizan el campo magnético terrestre como referencia para orientarse.

¿Por qué? Para reducir su exposición al calor y encontrar el camino más corto hacia su nido.






Descubrimiento sobre la orientación de las hormigas del desierto

Advertisement
 


Descubrimiento sobre la orientación de las hormigas del desierto

Desierto, mediodía. La temperatura de la arena es de 50 °C. Pocos animales pueden sobrevivir a esta temperatura, hasta el punto de que observamos algunos insectos muertos. Pero, si nos fijamos un poco, también podemos encontrar vida alrededor de estos restos. Concretamente, hormigas del género Cataglyphis, que están recolectando la carroña. Cuando obtienen el alimento, se apresuran para llegar a la seguridad de su nido por el camino más corto y reducir su exposición al calor. ¿Cómo saben cuál es este camino? La respuesta es tan compleja como fascinante.

Un grupo de investigadores de la Universidad de Würzburg (Alemania) ha conseguido desvelar buena parte de los mecanismos implicados en la orientación de las hormigas del desierto. Ya adelanto que el campo magnético terrestre está implicado. Esto no es nuevo –se conocen casos de orientación magnética en aves, peces, tortugas y mariposas– pero el caso de las hormigas es bastante especial.

Hormigas peripatéticas

Las hormigas del desierto pasan por tres fases en su vida. Primero trabajan dentro del hormiguero y más tarde salen a buscar alimento. Entre esas dos fases hay otra muy especial, la fase de “paseos de aprendizaje”. Las hormigas salen al exterior, hacen un corto recorrido y, cada cierto tiempo, se detienen y giran para mirar hacia la entrada del nido. Después siguen caminando hasta que regresan.

Advertisement
 

Se podría pensar que en estos paseos están familiarizándose con el paisaje circundante, pero es más complicado. Las hormigas están calibrando su “brújula celeste”.

La luz del sol se dispersa al incidir en la atmósfera. Esta es la causa de que el cielo se vea azul. Parte de la luz dispersada está polarizada perpendicularmente a la posición del sol, y la polarización es máxima a 90 º de la posición del astro. Ese máximo gira, lógicamente, con la posición del sol a lo largo del día.

Nuestros ojos no son capaces de distinguir el plano de la luz polarizada, pero otros animales sí pueden. Las abejas, por ejemplo, proporcionan con su danza información sobre la posición de una fuente de alimento, es decir, su distancia y el ángulo de dicha fuente respecto al sol. Pero, ¿qué sucede si el sol no es directamente visible? Las abejas son capaces de deducir la posición del sol utilizando el patrón de polarización de la luz. Les basta ver un poquito de cielo para ello.

Las hormigas del desierto también podrían orientarse por el patrón de polarización de la luz celeste. Pero este sistema tiene un inconveniente. Dicho patrón cambia a lo largo del día. Antes de usarlo es necesario calibrarlo con una referencia estable, que no cambie en ningún momento. Esa es la función del campo magnético durante los paseos de aprendizaje.

Los investigadores alemanes modificaron mediante filtros el patrón de polarización de la luz durante el paseo de aprendizaje de las hormigas. Descubrieron que si dicho patrón no rotaba con el sol a lo largo del día, o si se suprimía la luz polarizada, las hormigas no desarrollaban los centros nerviosos implicados en la construcción de su mapa interno. Por tanto, el paseo de aprendizaje era fundamental para integrar en dicho mapa la información sobre los cambios diarios en el patrón de la luz polarizada.

Advertisement
 

Brújula magnética y brújula celeste

¿Cuál era la referencia estable que se relacionaba con el patrón cambiante de la luz polarizada? Todo apuntaba al campo magnético terrestre. Ya en un artículo anterior, el equipo había demostrado que la orientación de las hormigas durante las paradas dependía del campo magnético.

Si producían un campo alternativo durante el paseo, la hormiga no se volvía para mirar hacia su nido, sino en la dirección hacia la que se había modificado el campo magnético.

A la izquierda se muestra el paseo de aprendizaje de la hormiga del desierto. Cada cierto tiempo se detienen y miran hacia la entrada del hormiguero. Si se modifica el campo magnético local durante el paseo, las hormigas se vuelven hacia una posición ficticia de la entrada. A la derecha vemos un resumen de los experimentos descritos en el texto. Los paseos de aprendizaje son normales tanto si se suprime el campo magnético como si se alinea con el sol. Un campo magnético caótico o sin componente horizontal desorienta a las hormigas e impide el desarrollo de los centros nerviosos implicados en la orientación.

Un artículo más reciente ha confirmado esta hipótesis. El campo magnético local del hormiguero fue manipulado mediante bobinas de Helmholtz. Tanto su distorsión caótica, como la eliminación de su componente horizontal –el que orienta las brújulas–, provocaron que las hormigas no se volvieran hacia la entrada del hormiguero durante las paradas del paseo de aprendizaje. Habían quedado desorientadas y miraban en direcciones aleatorias. Por otro lado, en estas hormigas tampoco se desarrollaban los centros nerviosos necesarios para su futura orientación mediante mecanismos de plasticidad neuronal.

Hubo más resultados curiosos. Los investigadores probaron a suprimir completamente el campo magnético local (componentes horizontal y vertical), y las hormigas completaron su aprendizaje sin problemas. Esto sugería que, aparte del campo magnético, las hormigas pueden optar en caso necesario por alguna referencia estable alternativa, tal vez visual u olfativa. Pero teniendo el fiable campo magnético terrestre disponible no recurren normalmente a este plan B. Por otro lado, alteraron el campo magnético de forma que quedara alineado con la posición del sol y esto tampoco dio problemas a las hormigas.

Advertisement
 

Dicho de otra forma, lo que necesitaban no era saber dónde está el norte, sino un campo magnético estable como sistema de referencia que les indique dónde está el nido durante su paseo de aprendizaje.

Una vez que las hormigas han construido su mapa interior mediante información visual junto con una brújula celeste bien calibrada, ya están dispuestas para pasar a la siguiente fase, buscar alimento y encontrar de nuevo el camino más corto a casa sin necesidad de recurrir al campo magnético. Todo esto, en medio del calor abrasador del desierto.





Resumen de la noticia: «Hormigas del desierto utilizan un sistema magnético para orientarse»

En el desierto, las hormigas del género Cataglyphis han desarrollado un sistema de orientación basado en el campo magnético terrestre. Un grupo de investigadores de la Universidad de Würzburg ha descubierto que estas hormigas utilizan el patrón de polarización de la luz celeste para calibrar su «brújula celeste». Durante sus paseos de aprendizaje, las hormigas se detienen y miran hacia la entrada de su nido, integrando información sobre los cambios diarios en el patrón de la luz polarizada en su mapa interno.

Implicaciones futuras

Este estudio aporta conocimientos sobre los mecanismos de orientación de las hormigas del desierto y podría tener aplicaciones en el campo de la robótica, inspirando el desarrollo de sistemas de navegación basados en la combinación de señales magnéticas y visuales.

Advertisement
 

Reflexión final

La capacidad de las hormigas del desierto para adaptarse y sobrevivir en condiciones extremas, utilizando recursos naturales como el campo magnético terrestre, nos muestra la asombrosa diversidad y complejidad de la vida en nuestro planeta.


Continue Reading
Advertisement
 
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Ciencia

Nuevo método revolucionario para una producción de plástico más eco-friendly

Published

on

By

Investigadores de la Asociación Estadounidense para el Avance de la Ciencia (AAAS) han desarrollado un método más sostenible para fabricar plásticos comparables a los plásticos de polietileno de baja densidad (LDPE) ampliamente utilizados.

Los autores exponen en ‘Science’ que su método es industrialmente viable. El LDPE es un material plástico suave, flexible y liviano que se usa en una variedad de aplicaciones comerciales.

El material es dúctil debido a su menor cristalinidad. Robert Froese y su equipo describen un enfoque novedoso para controlar la ramificación de cadena larga en polietileno en condiciones más suaves de fase de solución.

Según Froese, el proceso de ramificación en escalera produce un plástico que exhibe propiedades comparables a las del LDPE o sus mezclas con otras formas de polietileno lineal de baja densidad (LLDPE).






Investigación sobre métodos sostenibles para fabricar plásticos similares al LDPE

Advertisement
 

Investigación sobre métodos sostenibles para fabricar plásticos similares al LDPE

Investigadores de la Asociación Estadounidense para el Avance de la Ciencia (AAAS) han desarrollado un método más sostenible para realizar el trabajo necesario para fabricar plásticos comparables a los plásticos de polietileno de baja densidad (LDPE) ampliamente utilizados.

Los autores exponen en ‘Science’ que su método es industrialmente viable. Cabe matizar que LDPE es un material plástico suave, flexible y liviano que se usa ampliamente en una variedad de aplicaciones comerciales, incluidas películas plásticas, botellas y otros productos flexibles. Las propiedades únicas del LDPE se derivan de su estructura molecular similar a una rama de árbol, que le confiere flexibilidad.

El material también es dúctil debido a su menor cristalinidad. Estas propiedades lo diferencian de otras variedades de polietileno más lineales. Sin embargo, la polimerización ramificada de cadena larga característica del LDPE se logra mediante un proceso de síntesis de alta presión que consume mucha energía.

En este punto Robert Froese y su equipo describe un enfoque novedoso para controlar la ramificación de cadena larga en polietileno en condiciones más suaves de fase de solución. El método utiliza catalizadores de doble cadena, que pueden ensamblar dos cadenas de polímeros a la vez, unidas entre sí mediante una pequeña cantidad de dieno mezclado con etileno, creando una estructura molecular en forma de escalera.

Según Froese, el proceso de ramificación en escalera produce un plástico que exhibe propiedades comparables a las del LDPE o sus mezclas con otras formas de polietileno lineal de baja densidad (LLDPE).

Advertisement
 






Resumen de Noticia

Investigadores desarrollan método sostenible para fabricar plásticos similares al LDPE

Investigadores de la Asociación Estadounidense para el Avance de la Ciencia (AAAS) han desarrollado un método más sostenible para realizar el trabajo necesario para fabricar plásticos comparables a los plásticos de polietileno de baja densidad (LDPE) ampliamente utilizados.

Los autores exponen en ‘Science’ que su método es industrialmente viable. Cabe matizar que LDPE es un material plástico suave, flexible y liviano que se usa ampliamente en una variedad de aplicaciones comerciales, incluidas películas plásticas, botellas y otros productos flexibles. Las propiedades únicas del LDPE se derivan de su estructura molecular similar a una rama de árbol, que le confiere flexibilidad.

El material también es dúctil debido a su menor cristalinidad. Estas propiedades lo diferencian de otras variedades de polietileno más lineales. Sin embargo, la polimerización ramificada de cadena larga característica del LDPE se logra mediante un proceso de síntesis de alta presión que consume mucha energía.

En este punto Robert Froese y su equipo describe un enfoque novedoso para controlar la ramificación de cadena larga en polietileno en condiciones más suaves de fase de solución. El método utiliza catalizadores de doble cadena, que pueden ensamblar dos cadenas de polímeros a la vez, unidas entre sí mediante una pequeña cantidad de dieno mezclado con etileno, creando una estructura molecular en forma de escalera.

Advertisement
 

Según Froese, el proceso de ramificación en escalera produce un plástico que exhibe propiedades comparables a las del LDPE o sus mezclas con otras formas de polietileno lineal de baja densidad (LLDPE).


Continue Reading

Ciencia

Avance imparable: Starship acerca el regreso a la Luna con una misión casi perfecta

Published

on

By

El cohete más potente jamás construido ha completado un vuelo casi perfecto, siendo el tercer intento de SpaceX. A pesar de perderse durante la fase de reentrada en la atmósfera, se considera un éxito. El lanzamiento tuvo lugar desde la base espacial Starbase en Texas, donde se realizaron pruebas técnicas y maniobras clave para futuras misiones. A pesar de tres fallos durante el vuelo, se acerca el sueño de volver a la Luna y llegar a Marte.

El cohete, de más de 120 metros de altura, tiene dos etapas y cuenta con motores Raptor potentes. Tras explosiones en intentos anteriores en abril y noviembre, finalmente se logró un vuelo casi perfecto. SpaceX espera poder utilizar el cohete para lanzamientos científicos al espacio y misiones lunares en el futuro.

El cohete más potente jamás construido por nuestra especie, el mismo que promete volver a llevar a la humanidad a la Luna y hasta soñar con los primeros pasos humanos en el planeta rojo, ha logrado por primera vez completar un vuelo casi perfecto. Tras el estrepitoso fracaso de abril del año pasado (cuando el cohete explotó tan solo unos segundos después del despegue) y la amarga decepción de noviembre (cuando la nave logró superar los escollos iniciales pero también acabó estallando), este jueves, en su tercer intento, el cohete Starship de SpaceX ha conseguido superar su mayor prueba hasta la fecha, ha completado casi todos los hitos que se había propuesto pero, finalmente, «se ha perdido» durante la última fase de la misión mientras intentaba volver a entrar en la atmósfera terrestre.

Starship ha despegado este jueves al mediodía (hora peninsular española) desde la base espacial Starbase, situada en el sur de Texas, cerca de la famosa playa de Boca Chica y a unos 30 kilómetros de la localidad estadounidense de Brownsville. El vuelo de hoy es, en realidad, una mera prueba técnica ideada para poner a prueba el funcionamiento de todos los componentes implicados en la misión. En el transcurso de su recorrido, además, la misión ha realizado con éxito varias maniobras clave para futuras misiones. Por ejemplo, ha conseguido abrir las compuertas (algo muy importante para que, en un futuro, se pueda utilizar el cohete para lanzar instrumentos científicos al espacio). También ha logrado realizar la maniobra de transferencia de combustible entre tanques (un proceso imprescindible en el diseño de futuras misiones lunares y que NASA ha subvencionado con más de 52 millones de dólares.

En la otra cara de la moneda, en su tercer vuelo, Starship solo ha sufrido tres fallos. O mejor dicho, tres tareas que no se han podido completar como se había previsto. La primera tiene que ver con el propulsor del cohete, el SuperHeavy, que ha acabado explotando. La segunda tiene que ver con un fallo en el encendido de los motores durante la última fase de la misión, cuando la nave se disponía a reentrar en la atmósfera terrestre. Y la tercera es la pérdida de la nave espacial durante el proceso de regreso a la Tierra. Aun así, sus impulsores afirman que el vuelo ha sido todo un éxito y que, con ello, acerca a la humanidad al sueño de volver a la Luna, llegar a Marte y quién sabe si viajar incluso más allá.

Advertisement
 

El cohete lanzado hoy es un verdadero gigante de más de 120 metros de altura, casi diez metros de diámetro y una masa de aproximadamente 5.000 toneladas. A diferencia de sus predecesores, como los empleados para el programa Apolo, este vehículo ha sido diseñado para ser completamente reutilizable. De hecho, la estructura en sí se divide en dos etapas: un propulsor, conocido como Super Heavy, y una nave espacial bautizada como Starship. Estas piezas han sido ideadas para despegar de forma conjunta y desacoplarse en el proceso de vuelo para que, después, el propulsor vuelva sano y salvo a la Tierra y la nave espacial continúe su camino por el espacio. En ambos casos, estos instrumentos cuentan con el impulso de decenas de motores Raptor, unos de los más potentes jamás construidos.

El vuelo de hoy llega tras un arranque explosivo. En abril, en su primer intento de vuelo, Starship consiguió despegar de forma exitosa pero explotó tras tan solo unos segundos de vuelo. Entonces, SpaceX afirmó que la nave había experimentado un «rápido desmontaje no programado» pero que, aun así, el vuelo había sido un éxito porque les había permitido «aprender mucho» sobre el funcionamiento de este cohete. Meses más tarde, en noviembre, la compañía de Musk intentó de nuevo lanzar esta nave espacial y, aunque consiguió que las dos etapas del cohete se desacoplaran correctamente, las piezas volvieron a explotar. Análisis posteriores desvelaron que, además, la órbita del cohete se había desviado respecto a las estimaciones iniciales y que varios de los motores de la aeronave habían fallado. Por eso mismo, la compañía ha esperado varios meses antes de intentar un nuevo lanzamiento y, por fin, ha conseguido un vuelo casi perfecto.



Resumen de noticia

Resumen de la noticia:

El cohete más potente:

El cohete más potente jamás construido por nuestra especie, el mismo que promete volver a llevar a la humanidad a la Luna y hasta soñar con los primeros pasos humanos en el planeta rojo, ha logrado por primera vez completar un vuelo casi perfecto. Tras el estrepitoso fracaso de abril del año pasado y la amarga decepción de noviembre, este jueves, en su tercer intento, el cohete Starship de SpaceX ha conseguido superar su mayor prueba hasta la fecha, aunque se perdió durante la última fase de la misión al intentar volver a entrar en la atmósfera terrestre.

Detalles del vuelo:

Starship ha despegado este jueves al mediodía (hora peninsular española) desde la base espacial Starbase, realizando varias maniobras clave para futuras misiones como abrir las compuertas y realizar la transferencia de combustible entre tanques.

Implicaciones futuras:

El vuelo de Starship, a pesar de los tres fallos sufridos, acerca a la humanidad al sueño de volver a la Luna, llegar a Marte y explorar más allá del sistema solar.

Advertisement
 

Características del cohete:

El cohete lanzado hoy es un verdadero gigante de más de 120 metros de altura, casi diez metros de diámetro y una masa de aproximadamente 5.000 toneladas, diseñado para ser completamente reutilizable y cuenta con decenas de motores Raptor.

Antecedentes:

El vuelo de hoy llega después de dos intentos fallidos en abril y noviembre del año pasado, demostrando un progreso significativo en el desarrollo de la nave espacial.


Continue Reading

Ciencia

Explorando el corazón en desarrollo: detallando un mapa espacial unicelular

Published

on

By

El corazón, que es el primer órgano que se desarrolla en mamíferos, está formado por estructuras muy organizadas que necesitan coordinarse para funcionar correctamente. Un equipo científico ha logrado elaborar un mapa espacial del corazón humano en desarrollo con resolución unicelular. Los detalles de la investigación se publican este miércoles en la revista Nature, en un artículo que lideran científicos de la Universidad de California San Diego, en Estados Unidos, y que revela cómo se organizan las células a medida que se desarrolla el corazón. Pese a la importancia de este órgano, los científicos saben poco sobre cómo están dispuestas exactamente sus células; se desconoce cómo se coordinan espacialmente para crear las complejas estructuras morfológicas que son cruciales para el funcionamiento del corazón.

Este completo atlas celular avanza en este conocimiento y revela cómo los distintos tipos de células cardíacas interactúan y se organizan en complejas estructuras fundamentales para el funcionamiento del corazón. Si estas estructuras de los músculos de este órgano no se forman correctamente, pueden producirse cardiopatías congénitas, el defecto de nacimiento más frecuente, y también pueden desarrollarse varias cardiopatías en la edad adulta, recuerdan los autores. Para mapear el corazón, los investigadores, liderados por Elie Farah, Quan Zhu y Neil Chi, combinaron la secuenciación de ARN y tecnología de imágenes de vanguardia, gracias a estas tecnologías unicelulares pudieron generar una lista mejorada de los tipos de células del corazón humano.







Desarrollo de mapa espacial del corazón humano en desarrollo con resolución unicelular


Advertisement
 

El corazón, que es el primer órgano que se desarrolla en mamíferos, está formado por estructuras muy organizadas que necesitan coordinarse para funcionar correctamente. Ahora, un equipo científico ha logrado elaborar un mapa espacial del corazón humano en desarrollo con resolución unicelular.

Los detalles de la investigación se publican este miércoles en la revista Nature, en un artículo que lideran científicos de la Universidad de California San Diego, en Estados Unidos, y que revela cómo se organizan las células a medida que se desarrolla el corazón.

Pese a la importancia de este órgano, los científicos saben poco sobre cómo están dispuestas exactamente sus células; se desconoce cómo se coordinan espacialmente para crear las complejas estructuras morfológicas que son cruciales para el funcionamiento del corazón.

Este completo atlas celular avanza, precisamente, en este conocimiento y revela cómo los distintos tipos de células cardíacas interactúan y se organizan en complejas estructuras fundamentales para el funcionamiento del corazón.

Si estas estructuras de los músculos de este órgano no se forman correctamente, pueden producirse cardiopatías congénitas, el defecto de nacimiento más frecuente, y también pueden desarrollarse varias cardiopatías en la edad adulta, recuerdan los autores.

Advertisement
 

Para mapear el corazón, los investigadores, liderados por Elie Farah, Quan Zhu y Neil Chi, combinaron la secuenciación de ARN y tecnología de imágenes de vanguardia, explican los autores. Gracias a estas tecnologías unicelulares pudieron generar una lista mejorada de los tipos de células del corazón humano.

Análisis y estudio

El mapa puso de manifiesto la distribución regional de una amplia gama de subpoblaciones de células cardíacas, revelando cómo interactúan estas células durante el desarrollo del corazón.

El análisis unicelular identificó 75 subpoblaciones que presentaban características que correspondían a su ubicación anatómica y a la etapa de desarrollo, incluidos nuevos subtipos de células en las válvulas cardíacas.

Además, los autores descubrieron interacciones entre combinaciones específicas de poblaciones celulares. Por ejemplo, observaron interacciones entre las células del músculo cardíaco ventricular, los fibroblastos (parte del tejido conjuntivo) y las células endoteliales (que recubren los vasos sanguíneos), que pueden tener un papel en la formación de la pared ventricular.

En concreto, el equipo científico usó un método de obtención de imágenes espaciales denominado Merfish que permitió la identificación espacial preliminar de células individuales.

Advertisement
 

Junto con la técnica de transcriptómica unicelular, que posibilita conocer qué genes se expresan y en qué células (transcriptoma), los científicos consiguieron una resolución y profundidad de comprensión ‘sin precedentes’ de las células individuales y dónde residen.

La información detallada descubierta en este estudio puede ayudar a mejorar la comprensión de los mecanismos que subyacen a las cardiopatías congénitas y adultas, y también puede orientar nuevas estrategias de reparación cardíaca, concluyen los autores.






Resumen de noticia sobre el corazón humano

Resumen de noticia sobre el corazón humano

El corazón, que es el primer órgano que se desarrolla en mamíferos, está formado por estructuras muy organizadas y un equipo científico ha logrado elaborar un mapa espacial del corazón humano en desarrollo con resolución unicelular.

Los detalles de la investigación publicados en la revista Nature revelan cómo se organizan las células a medida que se desarrolla el corazón.

Advertisement
 

Se sabe poco sobre cómo están dispuestas exactamente las células del corazón y este completo atlas celular avanza en este conocimiento, revelando cómo los distintos tipos de células cardíacas interactúan y se organizan en complejas estructuras para su funcionamiento.

Las estructuras de los músculos cardíacos deben formarse correctamente para evitar cardiopatías congénitas y otras enfermedades cardíacas en la edad adulta.

El análisis unicelular identificó 75 subpoblaciones de células cardíacas con características que correspondían a su ubicación anatómica y a la etapa de desarrollo.

Los autores también descubrieron interacciones entre poblaciones celulares específicas, lo que puede tener un papel en la formación del corazón.

La información detallada descubierta en este estudio puede ayudar a mejorar la comprensión de las cardiopatías y orientar nuevas estrategias de reparación cardíaca.

Advertisement
 


Continue Reading

Reciente